

DATA SHEET Split Core DC Leakage Current Sensor

PN: CHD SK15D5

IPN=50~3000mA

Feature

- Split Core DC Leakage Current Sensor develops on base of magnetic modulation closed loop principle
- Apply unique patented technology for measure tiny current (mA level)
- Supply voltage: DC ±12~15 V

Advantages

- High accuracy
- Easy installation
- Wide current measuring range
- Optimized response time
- Low power consumption
- High immunity to external interference

Applications

- The current detection of the lift
- DC panel detection
- The signal system
- Current differential detection
- AC variable-speed drive/ Servo drive
- UPS and Inverter applications

• Can be customized

1

CE RoHS

Electrical data: (Ta=25°C, Vc=±15VDC,RL=10KΩ)								
Parameter Ref	CHD50 SK15D_	CHD100 SK15D_	CHD200 SK15D_	CHD500 SK15D_	CHD1000 SK15D_	CHD2000 SK15D_	CHD3000 SK15D_	
Rated input I _{PN} (mA DC)	±50	±100	±200	±500	±1000	±2000	±3000	
Measuring range I _P (mA DC)	0~±100	0~±200	0~±400	0~±800	0~±2000	0~±3000	0~±5000	
Output voltage Vo(V)	DC ±5V, 4-20mA, 0-20mA (±3%)							
Supply voltage V _{CC} (V)	(±12~±15) ±5%							
Accuracy X _G (%)	@IPN,T=25°C ≤±1							
Offset voltage V _{OE} (mV)	@IP=0,T=25°C <±500mV							
Temperature variation of V_{OE} $V_{OT}(mV/^{\circ}C)$	@IP=0,-20 \sim +60°C \leq ±6.0							
Linearity error εr(%FS)	≤1.0							
Current consumption I _C (mA)	<20mA							
Insulation voltage	@50/60Hz, 1min 2.5kV rms							

General data:					
Parameter	Value				
Operating temperature T _A (°C)	-25 +70				
Storage temperature T _S (°C)	-40~+85				
Load resistance (R _L)	≥10K				
Plastic material	PBT G30/G15, UL94- V0;				
	IEC60950-1:2001				
Standards	EN50178:1998				
	SJ20790-2000				

Dimensions(mm): OFS • OFS □ • 165 管脚说明: - 正电源 负电源 信号输出 - 接地端口 3: M (Vout) Pin definition: 4: G(GND) OFS: Zero adjustment (5.08 connector) 1: +(V_{cc}) 2: G(GND) 3: M (Vout) 4: - (Vcc) OFS: Zero adjustment (4P RJ11)

Remarks:

- During the installation process, on the sensor, close attention should be paid to side core interface is aligned, not forcibly closed.
- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- Custom design is available for the different rated input current and the output voltage.
- The dynamic performance is the best when the primary hole if fully filled with.

Tel: 025-85996365

The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.

